Lattice Cryptography for the Internet
نویسنده
چکیده
In recent years, lattice-based cryptography has been recognized for its many attractive properties, such as strong provable security guarantees and apparent resistance to quantum attacks, flexibility for realizing powerful tools like fully homomorphic encryption, and high asymptotic efficiency. Indeed, several works have demonstrated that for basic tasks like encryption and authentication, lattice-based primitives can have performance competitive with (or even surpassing) those based on classical mechanisms like RSA or Diffie-Hellman. However, there still has been relatively little work on developing lattice cryptography for deployment in real-world cryptosystems and protocols. In this work we take a step toward that goal, by giving efficient and practical lattice-based protocols for key transport, encryption, and authenticated key exchange that are suitable as “drop-in” components for proposed Internet standards and other open protocols. The security of all our proposals is provably based (sometimes in the random-oracle model) on the well-studied “learning with errors over rings” problem, and hence on the conjectured worst-case hardness of problems on ideal lattices (against quantum algorithms). One of our main technical innovations (which may be of independent interest) is a simple, lowbandwidth reconciliation technique that allows two parties who “approximately agree” on a secret value to reach exact agreement, a setting common to essentially all lattice-based encryption schemes. Our technique reduces the ciphertext length of prior (already compact) encryption schemes nearly twofold, at essentially no cost.
منابع مشابه
QTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملOn the design and security of a lattice-based threshold secret sharing scheme
In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...
متن کاملLattice Forward-Secure Identity Based Encryption Scheme
Protecting secret keys is crucial for cryptography. There are some relatively insecure devices (smart cards, mobile phones etc.) which have threat of key exposure. The goal of the forward security is to protect security of past uses of key even if the current secret key is exposed. In this paper we propose lattice based forward-secure identity based encryption scheme based on LWE assumption in ...
متن کاملPublic - Key Cryptanalysis Phong Q . Nguyen
In 1976, Diffie and Hellman introduced the revolutionary concept of public-key cryptography, also known as asymmetric cryptography. Today, asymmetric cryptography is routinely used to secure the Internet. The most famous and most widely used asymmetric cryptosystem is RSA, invented by Rivest, Shamir and Adleman. Surprisingly, there are very few alternatives known, and most of them are also base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014